Direct measurement of ˙OH and HO2˙ formation in ˙R + O2 reactions of cyclohexane and tetrahydropyran.

نویسندگان

  • Ming-Wei Chen
  • Brandon Rotavera
  • Wen Chao
  • Judit Zádor
  • Craig A Taatjes
چکیده

Formation of the key general radical chain carriers, ˙OH and HO2˙, during pulsed-photolytic ˙Cl-initiated oxidation of tetrahydropyran and cyclohexane are measured with time-resolved infrared absorption in a temperature-controlled Herriott multipass cell in the temperature range of 500-750 K at 20 Torr. The experiments show two distinct timescales for HO2˙ and ˙OH formation in the oxidation of both fuels. Analysis of the timescales reveals striking differences in behavior between the two fuels. In both cyclohexane and tetrahydropyran oxidation, a faster timescale is strongly related to the "well-skipping" (˙R + O2 → alkene + HO2˙ or cyclic ether + ˙OH) mechanism and is expected to have, at most, a weak temperature dependence. Indeed, the fast HO2˙ formation timescale is nearly temperature independent both for cyclohexyl + O2 and for tetrahydropyranyl + O2 below 700 K. A slower HO2˙ formation timescale in cyclohexane oxidation is shown to be linked to the sequential ˙R + O2 → ROO˙ → alkene + HO2˙ pathway, and displays a strong temperature dependence mainly from the final step (with energy barrier ∼32.5 kcal mol-1). In contrast, the slower HO2˙ formation timescale in tetrahydropyran oxidation is surprisingly temperature insensitive across all measured temperatures. Although the ˙OH formation timescales in tetrahydropyran oxidation show a temperature dependence similar to the cyclohexane oxidation, the temperature dependence of ˙OH yield is opposite in both cases. This significant difference of HO2˙ formation kinetics and ˙OH formation yield for the tetrahydropyran oxidation can arise from contributions related to ring-opening pathways in the tetrahydropyranyl + O2 system that compete with the typical ˙R + O2 reaction scheme. This comparison of two similar fuels demonstrates the consequences of differing chemical mechanisms on ˙OH and HO2˙ formation and shows that they can be highlighted by analysis of the eigenvalues of a system of simplified kinetic equations for the alkylperoxy-centered ˙R + O2 reaction pathways. We suggest that such analysis can be more generally applied to complex or poorly known oxidation systems.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Direct detection of OH formation in the reactions of HO2 with CH3 C(O)O2 and other substituted peroxy radicals

Introduction Conclusions References Tables Figures ◭ ◮ ◭ ◮ Back Close Full Screen / Esc Abstract Introduction Conclusions References Tables Figures ◭ ◮ ◭ ◮ Back Close Full Screen / Esc Abstract This work details the first direct observation of OH as a product from (R1): HO 2 +CH 3 C(O)O 2 → (products), which has generally been considered an atmospheric radical termination process. The technique...

متن کامل

Ab Initio Studies of ClOx Reactions: I. Kinetics and Mechanism for the OH + ClO Reaction

The reaction of OH with ClO has been investigated by ab initio molecular orbital and variational transition state theory calculations. Both singlet and triplet potential energy surfaces predicted by the G2M method are presented. The reaction was shown to take place primarily over the singlet surface by two main channels producing HO2 + Cl and HCl + O2 (∆ ), with the former being dominant. The p...

متن کامل

Secondary organic aerosol formation from cyclohexene ozonolysis: effect of OH scavenger and the role of radical chemistry.

To isolate secondary organic aerosol (SOA) formation in ozone-alkene systems from the additional influence of hydroxyl (OH) radicals formed in the gas-phase ozone-alkene reaction, OH scavengers are employed. The detailed chemistry associated with three different scavengers (cyclohexane, 2-butanol, and CO) is studied in relation to the effects of the scavengers on observed SOA yields in the ozon...

متن کامل

Total radical yields from tropospheric ethene ozonolysisw

The gas-phase reactions of ozone with alkenes can be significant sources of free radicals (OH, HO2 and RO2) in the Earth’s atmosphere. In this study the total radical production and degradation products from ethene ozonolysis have been measured, under conditions relevant to the troposphere, during a series of detailed simulation chamber experiments. Experiments were carried out in the European ...

متن کامل

Initiation in H2/o2: Rate Constants for H2 O2 → H Ho2 at High Temperature

The reaction between H2 and O2 has been studied in a reflected shock tube apparatus between temperatures of 1662–2097 K and pressures of 400–570 torr with Kr as the diluent gas. O atom atomic resonance absorption spectrometry (ARAS) was used to observe absolute [O]t under conditions of low [H2]0 so that most secondary reactions were negligible. Hence, the observed [O]t was the direct result of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Physical chemistry chemical physics : PCCP

دوره   شماره 

صفحات  -

تاریخ انتشار 2018